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INTERACTION OF SHOCK WAVES DUE TO
COMBINED TWO SHEAR LOADINGS

T. C. T. TING*

University of Illinois at Chicago Circle, Chicago, Illinois 60680

Abstract-The propagation of plane elastic-plastic waves due to combined two shear loadings is studied in
which the materials are assumed to be elastic, isotropic work hardening. For a general strain hardening law,
analytical solutions can be obtained only for simple waves and for two shear waves which are reducible to a
single shear wave. If the material is elastic, linearly strain hardening, analytical solutions can also be obtained
for two shear waves due to a series of step loadings and unloadings. The solution consists of shock waves prop
agating at constant speeds with a constant stress state between the shocks. The interaction of two or more shocks
meeting at a point, and the reflection of a shock wave from a rigid surface or from an interface between two
different media are studied in detail. The results can be applied to two shear waves in a plate of finite thickness
which consists of two or more layers of different materials. It is shown briefly that similar results are obtained
for materials with elastic, kinematical work hardening behavior.

1. INTRODUCfION

THERE has been increasing interest in the study of elastic-plastic wave propagation of
combined stresses in recent years (see, for example, [1-6]). A typical problem is that of
wave propagation ofcombined normal and shear stresses considered by Bleich and Nelson
[3J, and Clifton [4], and the two shear waves studied by Fong [5]. Assuming isotropic
work-hardening, the wave propagation is governed by a system of quasilinear hyperbolic
partial differential equations of first order with two pairs of characteristics whose slopes
are finite and non-zero. For combined normal and shear stresses, these two characteristic
slopes are not constants in the plastic regions even if the material is assumed to be elastic,
linearly strain hardening in a simple shear test. The characteristic condition along a
characteristic line cannot be integrated and Rieman invariants, which exist for hyperbolic
systems with one pair of characteristics, do not exist here. Therefore, except for particular
cases such as simple wave solutions [4], analytical solutions are very difficult to obtain and
the problem can be solved only approximately by a numerical approach [6].

lethe elastic-plastic wave propagation is induced by a loading of two shears which are
perpendicular to each other and uniformly distributed on one surface of an infinite plate,
the governing system of hyperbolic differential equations yields two characteristic slopes
whose values correspond to the elastic shear wave speed and the plastic shear wave speed
in a simple shear test. Since the elastic shear wave speed is a constant, at least one pair of
the characteristics has a constant slope. If the material behaves in an elastic, linearly strain
hardening manner in a simple shear test, the plastic wave speed is also a constant and both
pairs of characteristics are straight lines with constant slopes. This is why the two shear
wave problem provides an attractive example for the analysis of wave propagation for
combined stresses.
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For a general strain hardening material in which the stress-strain curve for a simple
shear test is concave to the strain axis, analytical solutions can be obtained for the following
initial and boundary value problems:

(i) The ratio of the two time-dependent shears applied at one surface of the plate is a
constant. If the initial values are not zero, the ratios ofthe two shears and the two velocities
prescribed initially must be the same constant as the one prescribed on the boundary.

(ii) Both initial and boundary values are constants. The ratio of the two shears at the
boundary, and the ratios of the two shears and the two velocities initially need not neces
sarily be the same.

The first case is clearly reducible to a single shear wave problem and hence the theory
developed by Karman, Taylor and Rakhmatulin applies. The second case can be solved by
the simple wave solutions. In both cases, analytical solutions are possible only for a plate
of infinite thickness, i.e. for a half-space, ifthe solution is to be valid for all time. (Additional
restriction may be required on the boundary values of the first case if a complete analytical
solution is needed.) Also in both cases, it can be shown that the ratio of the two shears
during a plastic loading is a constant.

When the ratio ofthe two shears is a constant during a plastic loading, the characteristic
conditions become integrable. If the material is elastic, linearly strain hardening, an analy
tical solution can be obtained for two shear wave propagation in a plate of finite thickness
due to a series of step loadings and unloadings. The plate may consist of two or more
layers of different materials. The solution consists of shock waves propagating at the elastic
or plastic wave speed with constant stress state between the shocks. Thus, the interaction
of two or more shocks at a point, and reflection of a shock from a rigid surface, from a free
surface, and from an interface between two different media becomes the essence of the
solution.

In the following, the system of differential equations for the combined two shear wave
propagation is derived in Section 2 and the corresponding characteristics and the charac
teristic conditions are obtained. In Section 3, the simple wave solution for the combined
two shear wave propagation is given. A particular case ofthe simple wave solution in which
the material is elastic, linearly strain hardening is presented in Section 4. It is shown that
the simple wave solution for elastic, linearly strain hardening material consists of three
regions of constant stress state with shock waves as their boundaries. In Section 5, the
interaction of two or more shock waves meeting at a point and the reflection of a shock
wave from an interface between two different media are given. This is then applied in two
examples in Section 6 for combined two shear waves in an elastic, linearly strain hardening
material due to a series of step loadings and unloadings. The solutions can be obtained
analytically or graphically. Finally, in Section 7, an analysis is given briefly for materials
which exhibit kinematical work-hardening. It is shown that the essential features of the
solution for isotropic work-hardening materials remain the same for kinematical work
hardening.

2. THE BASIC EQUATIONS AND THE CHARACTERISTIC CONDITIONS

Consider an infinite plate which occupies 0 ::; x ::; h of a Cartesian coordinate x, y, z
where h is a constant. If h is infinite, we have a half-space. Of three displacements ux ' uy , Uz

we consider the motion in which Ux == 0 while uyand Uz are functions of x and time t only.
Thus, the only nonvanishing stresses and strains are 'xy, 'xz' t: xy , and t:xz ' For simplicity,
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we will use the following notations:

417

(1 )

where a dot stands for o;at. The equations of motion are

arl .
~=PVl' (2a)

(2b)

(3)

where P is the mass density of the plate. For an elastic, isotropic work-hardening material,
the stress-strain law is (see [7]).

1 . A . af af .
= -2 r ij - 2 (2 +3A)(jijrkk +G(k)-a.. -Cl-rkm'

/1 /1 /1 r lj u!*m _

Here Aand /1 are the Lame constants,f(rij) is the yield condition, and k is the yield stress.
For the two shear problem considered here, both the von Mises and Tresca yield conditions
gIve

(4)

(5a)

(5b)

(6)

and equation (3) yields

1 1
"2Yl = 2/1 t l + G(k)rl(2r lt l + 2r2t 2),

1 1
-2 Y2 = -t2+G(k)r2(2r l t l + 2r2t 2)'

2/1

G(k) in equation (5) can be obtained from the stress-strain relation of a simple shear test.
In simple shear, the relation between rand y is, by letting r2 = 0 and omitting the subscript
1 in equation (5a),

1 1
-Y = -2 t +G(k)2r 2i.
2 /1

But t = (dr/dy)y and r 2 = k 2 in simple shear. Hence

G(k) = _1(~_~),
4k2

/1p /1

where /1p = dr/dy is the slope of the r '" y relation in the plastic region. For a given r '" y
relation we can obtain /1p in terms of r. Since r = k for simple shear, /1p in (6) is /1p(k). With
the continuity conditions

(7)
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Equations (2) and (5) can be rewritten as

ow

where
Aw+B ax = 0, (8)

p 0 0 0

0 !+~'i(~-!) 0 ~'I'2(~-~)
A=

J.1 k2
J.1 P J.1 k2

J.1 p J.1

0 0 p 0

0 ~'1'2(~-~) 0 !+~,~(~-~)
k2

J.1p J.1 J.1 k2
J.1P J.1

0 -1 0 0 VI

-1 0 0 0 '1
B= w=

0 0 0 -1 V2

0 0 -1 0 '2

Equation (8) is a system of quasi-linear first order partial differential equations. Notice
that both matrices A and B are symmetric.

The characteristic slope C of equation (8) is obtained by (see [8])

IcA-BI = O.

The four roots of equation (9), denoted by ±ce and ±cp, are

(9)

2 J.1
Ce = -,

P
C

2 = J.1 p
p ,

P
(10)

Ce corresponds to the elastic wave speed while cp corresponds to the plastic wave speed.
The characteristic condition along a characteristic is obtained by

VA(dw) = 0,

where IT is the transpose of the left eigenvector I of the equations

IT(cA - B) = 0,

(11)

(12)

and dw is the total differential of w. Omitting lengthy but otherwise straight forward
calculations, we write the characteristic conditions equation (11) in the following form:

'2(d'1 +pce dvd-'1(d'2+pce dv2) = 0 along c = ±Ce , (13a)

'l(d'l +pcpdvd+'2(d'2+pcpdv2) = 0 along C = ±cp, (13b)

If we introduce vector notations

t = (,1, '2)'

Equations (13) can be written as

t x (dt +PCe dv) = 0

t. (dt+pcpdv) = 0

along C = ± Ce ,

along C = ±cp ,

(14)

(15a)

(15b)
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(16)

The analysis presented so far made no assumption concerning the strain hardening pro
perty f.l p except that f.l p be a non-increasing function of k. Thus the characteristic conditions
as expressed by (13) or (15) hold for general strain hardening materials.

For unloading, the material behaves in an elastic manner. By letting cp = Ce in equations
(13) or (15) we deduce the characteristic conditions for the elastic region:

d'l+pcedvl = O}
_ along C = ±ce •

d'2+pcedv 2 = 0

Hence, if there is a discontinuity in stresses and velocities across the characteristics C = Ce

or C = -Ce , the discontinuities must satisfy the following jump conditions

['IJ±PCe[VIJ = 0

['2]±pCe[v 2] = 0

or, in vector notation

[t] ±pce[vJ = 0

where [fJ stands for the discontinuity off.

on C = ±Ce,

(17a)

(17b)

3. THE SIMPLE WAVE SOLUTION

Although the theory on which simple wave solutions are based has been established
and applied in other fields [9J, it does not seem to have been used widely in wave propagation
of combined stresses. We will present briefly the theory of simple wave solutions of equa
tion (8) and derive the generalized Rieman's invariants in this section. In the problem
considered here, there is only one simple wave solution, but it will be clear from the analysis
presented below that the results can be easily extended to more general systems of hyper
bolic partial differential equations.

We define a simple wave solution by the particular solution of equation (8) in which
the dependent variable w = (VI' 'I, V2, '2) is a constant vector along a characteristic line.
Since the characteristic slope C is a function of, I and,2, this implies that the characteristics
are straight lines for simple wave solutions. Now, w = constant along a line with slope
dxldt = C implies

aw
axc+w = O.

By eliminating W, between equations (18) and (8), we obtain

aw
(cA-B) ax = o.

On the other hand, elimination of awjax gives

(cA-B)W = 0

(18)

(19a)

(19b)

Since dw = a(awjax) +bw is the total differential along any direction dxldt = alb, if a and b
are arbitrary, we can combine equations (l9a) and (l9b) and write

(cA-B)dw = o. (20)
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Thus, if r is the right eigenvector of the equation

(cA-B)r = 0, (21)

dw is proportional to r. If(cA - B)is a symmetric matrix as is the case in the present problem,
the left eigenvector I and the right eigenvector r are identical. Hence dw is proportional
to 1. For c = +cp , I of equation (12) can be shown to be

1= for c = cp , (22)

and the fact that dw is proportional to I gives

(23)

Equation (23) is equivalent to three ordinary differential equations. Integration of these
equations gives

(24a)

(24b)

(24c)

where rx, {3, b are constants. Since k2 = ri + r~ = (1 + rx2)rL equation (24c) can be written
as

Equations (24) are the generalized Rieman's invariants which hold in the region where
the simple wave solution applies.

Now suppose that in equation (8) the initial and boundary conditions are given by

V li

rli
w(x,O) = Os x S 00, (25a)

V2i

'2i

[rl~r(O, t) = 0< t, (25b)
'2b

where Vli, 'li' V2i' '2i' rIb and r2b are constants. Let

(26)
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and kb > ki so that we have plastic loading. In the x-t plane (Fig. la), the solution can be
divided into three regions. The region between the line OA and the x-axis is a constant

B

-==-----------__x
(01

FIG. 1

(27)
(r2a-r2i)+pcAv2a-V2J = O.

To complete the formulation, we have

state with stresses and velocities given by equation (25a). The region between the line OB
and the t-axis is another constant state in which the stresses are given by equation (25b).
The region between OA and OB is where the simple wave solution applies. While the solu
tion is continuous across OB, it is in general discontinuous across OA. Let the subscript a
denote the solution along the top ofline OA. Then by equations (17a), we obtain

(r1a-rli)+PCe(V1a-Vli) = 0,

(28)

where ko is the initial yield stress.
Equations (24) to (28) are sufficient to determine all the unknowns. In the r1-r2 plane

(Figs. Ib and lc), the stress point i jumps to point a at the elastic wave front OA (Fig. la)
and moves continuously from point a to point b as the last plastic wave OB arrives. Notice
that the stress path ab is a portion of the radial line ob with the slope Il( (equation (24a)).
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Hence, with vector notations, we can write

where n is a constant.

(29)

4. SIMPLE WAVES IN LINEARLY STRAIN HARDENING MATERIALS

We will now assume that the material is elastic, linearly strain hardening so that cp is a
constant. For the initial and boundary values given by equations (25), the solution in the
x-t plane consists of three regions of constant state (see Fig. 2a). The stresses and velocities

B

o

""""----------__ x

(01

-pV1 -PV.

b
b

Jt,I e. i
Co 0

a I

0
T,

0
TO

(bl (el

FIG. 2

are discontinuous not only across OA but also across DB. We will derive the discontinuity
condition across the plastic wave DB in the foIlowing.

When ! I = en 2 where (X is a constant, the original differential equation (8) yields
VI (XV2 and 8vd8x = (x(8v2/8x). Therefore, VI = (XV2 +P where p is another constant.
With! I = (X! 2 and VI = (XV2 +p, the characteristic condition (13a) is automaticaIly satisfied
while (13b) is reduced to

d!l +pcpdvl = 0

dt2+pcpdv2 = 0
along c ±cp '
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along C = ±cp-
rz =+= pCpvz = const.

Therefore, if there is a discontinuity across C = ±cp , we must have

Since cp is now a constant, we have,

r t =+= pCpVt = const.

[r1]±pCp[VtJ =0

[<z]±pcp[vz] = 0
(30a)

or, in vector notations

(30b)

This is the condition which has to be satisfied across the line OB in Fig. 2a.
With the initial and boundary values given by equations (25), we can obtain the stresses

in the region a and velocities in the regions a and b graphically as follows. Since t'b is given,
point b in the stress plane can be located (see Figs. 1b and Ie). By connecting point b with the
origin, point a is obtained by the intersection ofob and the circle ofradius ko or k j depending
on whether k j < ko or k j > ko. Thus we obtain <1a and <Za' Now the jump condition across
OA (Fig. 2a) as given by equations (17a) or equations (27) indicates that the line connecting
points i and a in the r1 '" (-pvd plane and the <z '" (- PV2) plane has the slope of Ce (Fig.
2b and 2c). Similarly, the jump condition across OB as given by equations (30a) indicates
that the line connecting points a and b in the <1 '" (-pvd plane and the <z '" ( pvz)
plane has the slope of cp- With the knowledge of stresses at a and b, the points a and b in
Figs. 2(b) and 2(c) can be located graphically. The ordinates of a and b in these two figures
then give the velocities at a and b.

If, in Fig. 2(a), the stresses prescribed at the boundary x = 0 are changed to a new
constant value after t = to, a new simple wave solution can be obtained with point D
(Fig. 2a) as the new origin. Thus we will have again two shock waves, one traveling at the
speed Ce and the other traveling at the speed cp with a constant state between them. Since
Ce > cp , the shock wave DE eventually intersects the shock wave OR at point E (Fig. 2a).
In the next section, we will study the interaction of two or more shock waves meeting at
one point.

5. INTERACTION OF SHOCK WAVES

In Figs. 3, suppose that there are two or more shock waves converging to the point Q
as indicated by the dotted lines and, as a result, new shock waves are generated as shown
by the solid lines. To be more general, we will assume that the material to the left of point Q
is different from the material to the right of point Q. Therefore, PQ is the interface between
the two materials. The particular case in which a shock wave reflects from a rigid boundary
can be obtained by either letting c~ = 00, c~ = 00, or by letting Ce = c~, cp = c~ and con
sidering wave motions which are symmetric with respect to the line PQ.

The stresses and the velocities in the regions 1 and }' are known and we will determine
the stresses and the velocities in the regions 2, 3, 2' and 3'. We will use vector notations t'

and v for the stress and the velocity respectively and the subscripts 1, 1',2, ... ,3' to denote
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the regions. Thus 't I is the stress in region 1 and v 2is the velocity in region 2'. Also, we will
denote by km and k'". the maximum yield stress ever reached by the material to the left
and right respectively of point Q.

Depending on the strength of the incoming shock waves and the values of km , k'"., the
new shock waves generated will have one of the four different patterns as shown in Figs.
3a-d. We will discuss them separately in the following.

Case I k3 ~ km , k'". (Fig. 3a). For this case, the 4iscontinuity in stress and velocity
between regions 1 and 2 is, by equation (17b),

(31)

and the discontinuity between regions 2 and 3 is, by equation (30b)

'tz-pcpvz = 't3-PCpV3' (32)

p p

~ c'p

3
c. 2

-~--;-bc.--- /'/
;'

'L:/
c'o

p p

3 3' c'• c'•

FIG. 3

Similarly, consideration of the jump conditions between regions l' and 2' and between
2' and 3' gives

'tl' + PC~VI' = 'tz' + PC~Vz',

'tz'+PC~Vz' = 't3+PC~V3'

(33)

(34)

where use has been made ofthe continuity relation 't3 = 't3" V3 = V3'. Now, the yield stress
kz in region 2 cannot be larger than km , the maximum yield stress, since from region 1 to
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region 2 the process is elastic. On the other hand, the process from region 2 to region 3 is
plastic so that the stress state of region 2 must be at the yield surface km • Hence

Similarly,

k2 , = It2,1 = k;",

Moreover, by equation (29), we also have

(35)

(36)

(37)

(38)

where nand n' are constants,
Equations (31) to (38) give a complete description of the shock interaction. From

equations (35) to (38) one obtains

(39)

(40)

Elimination ofv2, V2' and v3 from equations (31) to (34) gives, with the use ofequations (39)
and (40),

(41)

(43)

(42)

where

K = AL: (tl-PCeVl)+2(tl'+Pc~vdJ
+-

Ce c~

From equation (41) it is clear that t3 is proportional to K. If we let K = IKI, we have

k3
t3 = KK.

On the other hand, by taking the absolute values of both sides of equation (41), we obtain

k3 = _1{(~+~)K+(~-~)km+(~-~)k;"}. (44)
1 1 Ce Ce cp Ce cp Ce-+-
Ce c~

Therefore, equations (42), (44), (43), (40), (39), (31), (32), (33), in the order mentioned, provide
the complete solution of the shock interaction.

The solution presented above is valid as long as k3 as expressed by equation (44) is
larger than km and k;".

Case II km ~ k3 ~ k;" (Fig. 3b). In this case, there is no shock wave with the speed cpo

The jump condition between regions 1 and 3 is, by equation (17b),

(45)
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Equations (45), (33), (34), (36) and (38) give a complete description of the shock interaction
for this case. By a similar analysis as in Case I, it can be shown that equations (40) and
(43) still hold and equation (44) is replaced by

k3 = A{(~+~)K+ (~-~)kJ, (46)_+_ Ce Ce cp Ce )

Ce c~

where K = IKI is defined in equation (42).
Case III k~ ~ k3 ~ km(Fig. 3c). In this case, the jump condition between regions I'

and 3' is, by equation (l7b)

(47)

Equations (47), (31), (32), (35) and (37) give a complete description of the shock interaction.
As in Case II, it can be shown that equations (39) and (43) still hold and equation (44) is
replaced by

k3 = _1 {(~+~)K+(~-~)km},
liCe Ce Cp Ce-+-
C~ Cp

(48)

where K = IKI is defined in equation (42).
Case IV k3 ~ km,k~ (Fig. 3d). For this case, only two elastic shock waves exist. The

jump condition between regions 1 and 3 is

while the jump condition between regions l' and 3' is

Elimination of v3 yields

and hence

k3 = IKI = K,

(49)

(50)

where K is defined in equation (42).
It can be shown that the four cases discussed above are mutually exclusive, i.e. there is

a unique solution for a given set of 't I' VI' 't I" VI' and km , k~. This is also evident from a
graphical solution which we will present below.

The vector K defined by equation (42) and used by all four cases can be obtained
graphically as follows. For a given 't1,VI,'tI"V 1, we locate the points 1 and l' in the
"I - (-pvd plane and the "2 - (-PV2) plane (see Figs. 4a and 4b). In both planes, draw a
straight line with positive slope c~ from point l' and a straight line with negative slope Ce

from point 1. Denote the abscissae of the intersections of these two lines by K 1 and K2

respectively. Then K = (K I, K 2 ). (The proof is omitted here.) In Case IV, 't3 = K so that
't 3 is determined. In the other three cases, 't 3 is proportional to K so that if we know k3 ,

we can determine 't3 and hence the point 3 in the stress plane (see Fig. 4c).
To obtain k 3 for the remaining three cases, let us consider Case I first. k3 as expressed

by equation (44) can be obtained graphically in the following manner. On rectangular
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~
C' c.

I' I I
l I
I
I
I

o l',

I--K,~
(0)

I~I'
I
I

o T.
I--K.--l

(b)

FIG. 4

coordinates, (Fig. Sa), we locate K, km and k;" on the horizontal axis whose abscissae
correspond to their magnitudes. Without loss of generality, we assume that km > k;".

Cp

o

o

(0-)

p

FIG. 5
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Draw a straight line with positive slope c~ from k'", which intersects the vertical line through
Kat p. From p draw a straight line with negative slope Ce which intersects the vertical line
through k", at q. Finally, draw a straight line from q with negative slope cp and a straight
line from k'", with positive slope c~. It can be shown that the abscissa of the intersection of
these two lines is k3 as expressed by equation (44).

For Case II, the procedure is the same as in Case I up to the point p (Fig. 5b). Then we
draw a straight line from p with negative slope Ce and a straight line from k'", with positive
slope c~. It can be shown that the abscissa of the intersection of these two lines is k3 as
expressed by equation (46).

For Case III, the procedure of determining k3 is exactly the same as that shown in
Fig. 5(b) if we replace k'"" c~, c~, Ce in Fig. 5{b) by kn" Ce , cp , c~ respectively.

After determination of k3 and 1'3,1'2 and 't2' as expressed by equations (37) to (40) can
be obtained graphically (cf. Figs. 1band lc). In Fig. 4(c), t2 and 1'2' are determined for Case I.
The procedure is self-explanatory. For other cases the procedures are similar. The velocities
V2, vz, and V3 as expressed by equations (31) to (34) can also be determined graphically
(cf. Figs. 2b and 2c). Thus a complete graphical solution can be obtained.

The case in which a shock wave is reflected from a free surface is trivial and is omitted
here.

6. EXAMPLES

Consider a half-space in which the material is elastic, linearly strain hardening. For
illustrative purposes, we assume that the initial yield stress ko = 1000 psi and take the
ratio ce/cp = 4. As a first example, consider the initial and boundary conditions as given by

1't(X,O) = Vt(x,O) = V2{X,0) 0,

1'2{X,0) = 915 psi, 0 :=:;; x < 00,

{
= 2000 psi, 0 < t < to,

1't(O,t) =0,
to < t,

1'2(0, t) = 915 psi, 0 < t.

(51)

The complete solution is shown in Figs. 6. It is seen in Fig. 6(a) that the plastic shock wave
OB does not penetrate into region 17. It is completely absorbed at point B. In Fig. 6(b),
the stress state in each region is shown, while in Fig. 6(c) and 6{d), the velocities are given.

The shear strains in each region can be obtained easily by the following considerations.
The continuity of displacements across a shock wave requires that

(v] ±ceb'] = 0

(v]±cp(y] = 0

on C = ±Ce ,
(52)

where Y = (Yt, Y2)' Making use of equations (17b) and (30b), equation (52) can be written
as

pC;[y] = (1']

pc~(y] = ('t]

on C= ±Ce ,
(53)
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3

FIG.6c
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(54)

Thus shear strains in each region can be obtained by either equations (52) or (53). In Fig.
6(e), the residual plastic strains are given by using equation (53).

Let us consider the second example in which the initial and boundary values are given by

"l(X,O) = Vl(X, O) = vz(x,O) 0,

"z(x,O) = 1000 psi, 0 ::;; x < co,

{
= 750 psi, 0 < t ::;; to,

Tl(O,t)
= 800 psi, to < t,

"z(O, t) = 1000 psi, 0 < t.

In other words, the half-space is prestressed to the yield limit by TZ and, at t = 0, an ad
ditional stress" 1 = 750 psi is added to the boundary. After a duration of time to, this
additional stress Tl is increased to 800 psi. The shock wave interaction for this example is
shown in Fig. 7(a). It is seen that even though the material is prestressed to the yield limit,
the initial disturbance is propagated at the elastic wave speed Ce as indicated by the line OA.
(A similar result was found by Clifton [4].) Moreover, at t to when the applied force is
increased, the disturbance is still propagated at the elastic wave speed instead of the plastic
wave speed as shown by the line DB. The dotted lines in Fig. 6(a) are also shock waves but
their discontinuities are so insignificant that their existence can be ignored. In Fig. 7(b),
the stresses are given for each region.

7. TWO SHEAR WAVES IN KINEMATICAL

WORK-HARDENING MATERIAIS

For kinematical work-hardening materials, we express the yield condition for the two
shear problem in the following form

(55)

where k is now a constant. With the flow rule

we have the relation

tt = bA(T l -TV

t! = bA(Tz -,,~)

(56a)

(56b)

where b is also a constant as suggested by Prager [10]. A > 0 if the material undergoes
plastic deformations and A = 0 if the material behaves elastically. The stress-strain law
now yields

(57a)

(57b)
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In simple shear, the constant b is related to J1.p , the work-hardening coefficient, by the
equation

(58)
111

b J1. p J1.

The complete system of equations governing the two shear waves in kinematical work
hardening materials consists of equations (2) and (55) to (57) which can be written as,
with the aids of equation (7),

OW
Aw+B- = 0,ox (59)



where
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P 0 0 0 0 0 0

1
00 0 0 0 t1

J1

0 0 P 0 0 0 0

A= 0 0 0
1

00 t1
J1

0 0 0 0 1 0 -btl

0 0 0 0 0 1 -btz

0 t1 0 tz -t1 -tz 0

0 -1 0 0 0 0 0 V1

-1 0 0 0 0 0 0 r1

0 0 0 -1 0 0 0 Vz

B= 0 0 -1 0 0 0 0 , W= rz ,

0 0 0 0 0 0 0 r1

0 0 0 0 0 0 0 r!

0 0 0 0 0 0 0 A

and

- * - * (60)r1 = r1-r1, rz = rz-rz

Following the analysis presented before, it can be shown that of seven characteristic slopes
of equation (59), three have zero slope and the rest of four have the slopes expressed by
equation (10). The characteristic conditions along C = ±Ce and C = ±cp are

tZ(dr1 +pcedv1)-t1(drz+pcedvz) = 0 along C = ±Ce, (61a)

t1(dr1 +pcpdv1)+tz(drz+pcpdvz) = 0 along C = ±cp, (61b)

which are similar to equations (13). The characteristic conditions along C = 0 simply
reduce to equations (55), (56a) and (56b).

The simple wave solution can be obtained in a similar manner. Omitting the derivations,
we will present the result by an example. Suppose that the material is initially prestressed
to the stress state indicated by point i in Fig. 8(b) which is on a new yield circle also given
and, at t = 0, the stress state at x = 0 is changed to point b as shown in Fig. 8(b). The simple
wave solution will consist of three regions of constant state with two shock waves as the
dividing lines (Fig. 8a). The stress state in the region between OA and OB is the point a in
Fig. 8(b) which is located by the intersection of the yield circle and the line connecting point b
to the center ofthe yield circle. The deformation process from i to a is elastic while from a to b
is plastic. The yield circles for the regions i and b of Fig. 8(a) are different as shown in
Fig.8(b).
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One can proceed, as in the isotropic work-hardening case, to obtain shock wave interac
tions for the kinematical work-hardening materials. Since the procedure is straight forward,
this is omitted here.

8. DISCUSSION' I •

o j

Although a series of step loadings and unloadi~tn~;not occur in practical applica
tions, the problem considered here offers an exact, closed form solution which is not possible
for general loadings. The analysis can be applied to a plate of finite thickness with two or
more layers of different materials. It also offers some qualitative results. As is shown in an
example, any change in the stress state at one surface of the plate, regardless of whether the
change is from a stress state at a lower yield surface to a higher yield surface or vice versa,
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the disturbance is always (with one exception) propagated at the elastic wave speed. The
exceptional case is the one in which the two shear wave can be reduced to a single shear
wave. This phenomenon, which is usually attributed to the rate sensitivity of the material, is
due to the combined stresses even though the material is not rate dependent. Moreover,
this phenomenon exists regardless of whether the material is isotropic work-hardening or
kinematical work-hardening.
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A6cTpaKT-l1ccJIep;yeTcli pacnpocTpaHeHHe nJIOCKHX, ynpyro-nJIaCTH'iecKHX BOJIH, npHHap;JIelKamHX K
KOM6HHHpoBaHHbIM P;ByM Harpy3KaM cp;BHra. TIop;pa3YMHBaIOTClI, 'iTO MaTepHaJIbI lIBJIlilOTCli ynpyme,
H30TponHbIe C ynpO'iHeHHeM. )l;JIli 06mero 3aKOHa ynpO'iHeHHlI MOlKHO nOCTpoHTb aHaJIHTH'iecKHe
peweHHe TOJIbKO P;JIli CJIy'iali npOCTbIX BOJIH H p;ByX BOJIH cp;BHra, KOTopble COKpamalOTCH p;o op;HHapHoit
BOJIHbI cp;BHra. )];JIll ynpyroro MaTepHaJIa, C JIHHeitHbIM ynpO'iHeHHeM MOlKHO nOJIy'iHTb peweHHlI TaKlKe
p;JI1i p;ByX BOJIH cp;BHra, npHHap;JIelKamHX K PllP;y cTyneH'iaTbIX Harpy30K H pa3rpY30K. B peweHHH 3aKJIIO'I
alOTCli y.n;apHbIe BOJIHbI, pacnpOCTpaHlIlOmHecll CnOCTOllHHbIMH CKOpocTbllMH H nOCTOllHHOM HanplilKeHHOM
COCTOllHHeM MelKp;y yp;apaMH. I1CCJIe.n;yeTclI nOAP06HO B3aHMop;eitcTBHe p;ByX HJIH 60JIee yp;apoB,
BCTpe'lalOmHXCli B TO'iKe, a TaKlKe OTpalKeHHe yp;apHoit BOJIHbI OT lKecTKOit noaepXHOCTH HJIH OT nOBe
pXHOCTH pa3p;eJIa MelKp;y p;ByMlI pa3HbIMH cpep;aMH. I1CnOJIb3YlOTClI pe3YJIbTaTbI )I;JIlI CJIy'iall p;ByX BOJIH
c.n;BHra B nJIaCTHHKe KOHe'iHoit TOmHHbI, H3rOTOBJIeHHoit H3 .n;ByX HJIH 60JIee CJIoeB pa3HbIX MeTepHaJIOB.
TIoKa3aHO KpaTKO, 'iTO nop;06HbIe pe3YJIbTaTbI nOJIY'laIOTCli MaTepHaJIOB CynpyrHM noaep;eHHeM KHHeMaTH
'ieCKOrO ynpO'iHeHHlI.


